
Journal of Hydrology 476 (2013) 42–51
Contents lists available at SciVerse ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol
Estimating actual evapotranspiration from an alpine grassland
on Qinghai-Tibetan plateau using a two-source model and parameter uncertainty
analysis by Bayesian approach

Zhu Gaofeng a,⇑, Su Yonghong b,2,3, Li Xin c,2,4, Zhang Kun a,1,5, Li Changbin a,1,6

a Center for Dryland Water Resources Research and Watershed Science, Key Laboratory of Western China’s Environmental Systems (Ministry of Education),
Lanzhou University, PR China
b Division of Hydrology Water-Land Research in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, PR China
c Laboratory of Remote Sensing and Geospatial Science, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, PR China

a r t i c l e i n f o s u m m a r y
Article history:
Received 29 May 2012
Received in revised form 18 September 2012
Accepted 11 October 2012
Available online 30 October 2012
This manuscript was handled by
Peter K. Kitanidis, Editor-in-Chief, with the
assistance of Markus Tuller, Associate Editor

Keywords:
Bayesian statistics
Evapotranspiration
Shuttleworth–Wallace model
Alpine grassland
Qinghai-Tibetan plateau
0022-1694/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.jhydrol.2012.10.006

⇑ Corresponding author. Address: 222 South Tian
Province 730000, PR China. Tel.: +86 931 8912812; fa

E-mail addresses: zhugf@lzu.edu.cn (G. Zhu), syh
ac.cn (X. Li), zhkgis@163.com (K. Zhang), licb@lzu.edu

1 Address: 222 South Tianshui Road, Lanzhou, Gansu
2 Address: 320 West Donggang Road, Lanzhou, Gans
3 Tel.: +86 931 4967094; fax: +86 931 4967152.
4 Tel.: +86 931 4967249; fax: +86 931 8279161.
5 Tel.: +86 931 8912812; fax: +86 931 8912856.
6 Tel./fax: +86 931 8912856.
A Bayesian method was used to fit the Shuttleworth–Wallace model to half-hourly measurements of
evapotranspiration (ET) with the eddy covariance technique from an alpine grassland on the Qinghai-
Tibetan plateau during the main growing season in 2008, and probabilistically estimated its parameters
and predication uncertainties using both dataset-by-dataset and multi-data procedures. This enabled us
to reveal the seasonal variations of some physiology-related parameters and the impacts of constant
parameters on the performances of the model. Results indicated that the S–W model using the posterior
mean parameter values obtained by different procedures all successfully reproduced the observed
responses in ET. However, the seasonal variations in the canopy conductance parameter (gmax) should
be counted in long-term ET estimating. From simulated results, the daily mean partitioning [i.e. the ratio
of the estimated daily soil evaporation (E) over total evapotranspiration (ET); E/ET] was relative low
(0.02–0.07 with a mean of 0.04) for the alpine grassland when leaf area index (LAI) was more than
3 m2 m�2, and was closed related to LAI and vegetation condition. At the diurnal timescale, the canopy
conductance was the main factor control the partitioning of ET.

� 2012 Elsevier B.V. All rights reserved.
1. Introductions

Evapotranspiration (ET), which is composed of vegetation tran-
spiration (T) and soil water evaporation (E), is an important land
surface process in climatology and a nexus for terrestrial carbon
and energy cycles (Jung et al., 2010). Therefore, ET estimates are cru-
cial to a wide range of problems in hydrology (Xu and Singh, 1998),
geographical ecology (Fisher et al., 2011), global change studies
(Reynolds et al., 2000) and practical applications. Generally, ET
and its components can be directly measured by lysimeter, sap flow,
eddy covariance (EC) and stable isotope techniques (Williams et al.,
2004; Moran et al., 2009) but expensively and labor-intensively
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(Gasca-Tucker et al., 2007). On the other hand, numerous models,
from the single climatic variable driven equations to energy balance
and aerodynamic principle combination methods [see Xu and Singh
(1998) for a comprehensive review], have been developed for esti-
mating ET, and are becoming more and more popular (Shugart,
2000). Among them, the Shuttleworth–Wallace (S–W) model, in
which the interactions between the fluxes from soil and canopy
are taken into account, is physically sound and rigorous, and is more
suitable for estimating ET from complex or seasonally changing veg-
etation covers (Kato et al., 2004; Hu et al., 2009).

Although the S–W model has been widely used in estimating ET
from various plant types over small experiment catchments (e.g.,
Iritz et al., 1999 among others) or in the water balance model at
a continent (Vorosmarty et al., 1998), there are still some insuffi-
ciencies in the application of the S–W model (Hu et al., 2009). First,
the S–W model is highly complex with many site- or species-
specific parameters that needed to be calibrated with observed
data (Zhou et al., 2006). Traditionally, the parameters in the S–W
model were obtained by fitting the model to (a series of) ecosys-
tem-level ET observations through ‘trial and error’ procedures:
the model is re-run with different sets of parameter values until
observations are reproduced well (e.g., Leuning et al., 2008; Hu
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et al., 2009). However, in a deterministic model with multiple
parameters, several combinations of input parameters may give
similar model result, which hampers the identification of a unique
set of parameters (Reinds et al., 2008). Thus, it is more reasonable
to treat the parameters as probability distributions rather than
fixed values (Larssen et al., 2006). In addition, the traditional cali-
bration methods do not take into account the uncertainty in the
parameters, model structure and observations (Reinds et al.,
2008). Relatively recently, the Bayesian approach has been intro-
duced to combine probability distributions of model parameters,
based on prior assumptions about their magnitude and uncer-
tainty, with measurements to generate posterior distributions of
parameters. This not only allows quantifying uncertainty in inputs,
parameters and outputs of models, but also allows considering
prior knowledge for all parameters and accommodating unknown
influences (Clark and Gelfand, 2006; Zhu et al., 2011). Abundant
evidence has shown that the Bayesian approach provides powerful
new tools to draw inference on high-dimensional models (Clark
and Gelfand, 2006). However, the use of Bayesian approach with
the S–W model is relatively rare, probably due to the higher
dimensionality of the parameter spaces as compared to other
evapotranspiration models (e.g., the Penman–Monteith model;
Samanta et al., 2007). The second problem is that some parameters
in the S–W model were closely related to the physiological state of
the plant and therefore they can exhibit some seasonal fluctuations
during the whole growing stage (Wever et al., 2002). However, the
pattern of seasonal variations of the physiology-related parameters
is critically limited for the alpine grasslands. Furthermore,
although the partitioning of ET using the S–W model and its
controls were investigated by several authors (e.g., Kato et al.,
2004; Sauer et al., 2007; Hu et al., 2009), studies based on long-
term performance of the model over a wide type of ecosystem
under various climatic conditions are still needed (Hu et al., 2009).

In this study, we applied the Bayesian approach to calibrate the
S–W model on the alpine grassland on the Qinghai-Tibetan Pla-
teau, which is one of the most sensitive regions to climate change
(Liu and Chen, 2000). The S–W model were calibrated using: (i)
seasonal EC-measured ET data in different growing stages, called
‘dataset-by-dataset calibration’ hereafter, and (ii) the entire ET
data during the whole growing season, called ‘multi-data calibra-
tion’. In this way, we can investigate the seasonal fluctuations of
parameters in the S–W model, and the impact of fixed parameters
throughout the investigated period on the performances of the
model. Also, the partitioning of ET and its controls in the alpine
grassland were investigated and compared with other ecosystems.
It is expected that this study can improve our understandings not
only about hydrological cycle in the alpine ecosystem, but also the
impacts of climate change on the water balance in the highest pla-
teau of the world.
2. Methods and materials

2.1. Study site

The study site is located at Arou freeze/thaw observation station
(lat. 38�020N, long. 100�270E) in the Qilian Mountains of the Qing-
hai-Tibetan plateau, China. The elevation is 2995 m above sea level.
The annual average temperature and precipitation for 1990–2000
were �0.2 �C and 411.3 mm (Niu et al., 2008), respectively. The soil
is classified as subalpine meadow soil with an average thickness of
about 1 m (Chang et al., 2009), are wet high in organic matter (ca.
14.6%).

The plant community with a height of 20–30 cm is dominated
mainly by four perennial herbs, Carex, Stipa grandi, Leontopodium
and Potentillal, and by alpine patchy shrub species, Potentilla
fruticasa, Caragana jubata and Salix gilashaniea. The grassland turns
green at the end of May and becomes senescence in early or middle
October, depending on the climate of a given year.

2.2. Measurements

The site was set up and instrumented in June 2008 as part of the
Watershed Allied Telemetry Experimental Research (WATER) pro-
ject (see details in Li et al., 2009 and Supporting information A).
Net ecosystem water vapor and carbon dioxide gas exchange was
measured at the height 2 m using the eddy covariance system,
which consists of a 3D sonic anemometer (CSAT-3, Campbell Scien-
tific Inc. Logan, UT, USA) and an open-path CO2/H2O gas analyzer
(Li-7500, LiCor Inc., USA). The signals were recorded at a rate of
10 Hz by a datalogger (Campbell Scientific Inc. Logan, UT, USA)
and then block-averaged over 30-min intervals. Post-processing
calculations, using the TK2 software package (Mauder and Foken,
2004), included the WPL density fluctuation correction, spectral
loss correction, planar fit coordinate rotation, sonic virtual temper-
ature conversion, and spike detection. Following the procedure in
the LI-COR Instruction Manual (Li-COR Inc., 2000), the CO2/H2O
analyzer system was calibrated every year at the beginning of
the growing season. Zero points were established using dry N2

gas, the CO2 span was calibrated using a standard gas bottle of
CO2 (303.3 607.7 and 1000 ppmv standard CO2 gases) and the
water vapor using a dew-poing generator (Li-610; Li-COR Inc.,
NE, USA).

Continuous complementary measurements also included stan-
dard climatological and soil temperatures. Rainfall was measuring
using a tipping bucket rain gauge (TE525MM, Campbell Scientific
Instruments Inc.). Air temperature and relative humidity (HMP45C,
Vaisala Inc., Helsinki, Finland) were measured at heights of 2 and
10 m above the ground. Wind speed and direction (034B, Met
One Instruments, Inc. USA) were measured at the height of 10 m.
Downward and upward solar and longwave radiation (PSP, The
EPPLEY Laboratory Inc., USA) and photosynthetic photon flux den-
sity (PPFD) (LI-190SA, LI-COR Inc.) were measured at height of
1.5 m. Soil temperature (Campbell-107, Campbell Scientific Instru-
ments Inc.) and moisture (CS616, Campbell Scientific Instruments
Inc.) were measured at 0.1, 0.2, 0.4, 0.8, 1.2 and 1.6 m depths. Soil
heat fluxes were measured at the depths of 0.05 and 0.15 m (HFT3,
Campbell Scientific Instruments Inc.). These data were logged
every 30 min by a digital micrologger (CR23X, Campbell Scientific
Inc.) equipped with an analog multiplexer (AM416) was used for
sampling and logging data. Leaf area index (LAI) was measured
by harvesting the vegetation approximately every 2 weeks during
the growing season, and the gaps were linearly interpolated to dai-
ly interval.

2.3. Shuttleworth–Wallace (S–W) model

In the S–W model, the ecosystem evapotranspiration (kET is
separated into evaporation from the soil surface (kE) and transpira-
tion from the canopy (kT) (Fig. 1). The total evapotranspiration and
each term are expressed (Shuttleworth and Wallace, 1985) as:

kET ¼ kEþ kT ¼ CsETs þ CcETc ð1Þ

ETs ¼
DAþ fqCpðes � eaÞ � DrasðA� AsÞg=ðraa þ rasÞ

Dþ cf1þ rss=ðraa þ rasÞg
ð2Þ

ETc ¼
DAþ fqCpðes � eaÞ � DracAsg=ðraa þ racÞ

Dþ cf1þ rsc=ðraa þ racÞg
ð3Þ

where ETs and ETc. are terms similar to that in the Penman–
Monteith (Monteith, 1965) model to describe soil evaporation and



Fig. 1. Schematic diagram of the S–W model. From right to left, rsc and rac bulk resistances of canopy stomatal and boundary layer, respectively; ras and raa aerodynamic
resistances from soil to canopy and from canopy to reference height, respectively; rss soil surface resistance; Rn and Rns net radiations above canopy and to soil surface,
respectively; G soil heat flux, kT transpiration from canopy, kE evaporation from soil, kET total evapotranspiration, and H sensible heat.
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canopy transpiration (W m�2), respectively; Cs and Cc are the soil
surface resistance coefficient and canopy resistance coefficient
(dimensionless), respectively; k is the latent heat of water vaporisa-
tion (MJ kg�1); D is the slope of the saturation vapor pressure ver-
sus temperature curve (kPa K�1); q is air density (kg m�3); Cp is the
specific heat at constant pressure (1013 J kg�1 K�1); es and ea are the
saturated and actual vapor pressures (kPa) at the reference height
(2 m), respectively; c is the psychrometric constant (kPa K�1); rsc

and rac are bulk resistances (s m�1) of canopy stomatal and bound-
ary layer, respectively; ras and raa are aerodynamic resistances
(s m�1) from soil to canopy and from canopy to reference height,
respectively; rss are soil surface resistance(s m�1). Calculations of
the five resistances will be addressed later. A and As are the avail-
able energy (W m�2) input above the canopy and above the soil
surface, respectively, and are defined as follows:

A ¼ Rn � G ð4Þ

As ¼ Rns � G ð5Þ

where Rn and Rns are net radiation fluxes into the canopy and the
substrate (W m�2), respectively; G is the soil heat flux (W m�2).
The radiation reaching soil surface, Rns, can be calculated using a
Beer’s law relationship of the form:

Rns ¼ Rn expð�KALAIÞ ð6Þ

in which KA is the extinction coefficient of light attenuation, and LAI
is the total leaf area index.

In Eq. (1), the two coefficients Cs and Cc are obtained as follows:

Cs ¼
1

1þ RsRa=ðRcðRs þ RaÞÞ
ð7Þ

Cc ¼
1

1þ RcRa=ðRsðRc þ RaÞÞ
ð8Þ

in which Ra, Rs and Rc are calculated as:

Ra ¼ ðDþ cÞraa ð9Þ

Rs ¼ ðDþ cÞras þ crss ð10Þ
Rc ¼ ðDþ cÞrac þ crsc ð11Þ

In Eqs. (1)–(3), parameters k, es, D, q and c are directly related to
the climatic variables, which is calculated by the formula of Allen
et al. (1998):

k ¼ 2:501� 0:002361Ta ð12Þ

esðTaÞ ¼ 0:6108 exp
17:27Ta

Ta þ 237:3

� �
ð13Þ

D ¼
4098 0:6108 exp 17:27Ta

Taþ237:3

� �h i
ðTa þ 237:3Þ2

ð14Þ

q ¼ P
RTkV

ð15Þ

c ¼ CpP
ek

ð16Þ

where Ta is the air temperature (�C) at the reference height; P is the
atmospheric pressure (kPa); TKV is the air virtual temperature (K),
TKV = 1.01(273 + Ta); R is the specific gas constant (287 J kg�1 K�1);
e is the ratio between the molecular weights of water vapor and
air (0.622).

2.4. Calculation of resistances in the S–W model

Different methods have been proposed to calculate the five
resistances involved in the S–W model (Fig. 1). The performances
of different parameterization methods for each resistance were
compared (given in Supporting information B). In our paper, the
two aerodynamic resistance (i.e., raa and ras; Fig. 1) was modeled
following the approach proposed by Shuttleworth and Wallace
(1985), and the boundary layer resistance (rac; Fig. 1) was param-
eterized as suggested by Shuttleworth and Gurney (1990) (also
see Supporting information B).

Soil surface resistance (rss; Fig. 1) was expressed as a function of
near-surface soil water content (Sellers et al., 1992):
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rss ¼ exp b1 � b2
h
hs

� �
ð17Þ

in which b1 (s m�1) and b2 (s m�1) are empirical constants; h the
soil water content (m3 m�3) at a depth of 5 cm, and hs is the
saturated water content (m3 m�3), which was estimated empirically
through the near-surface soil texture.

In many problems it is more convenient to work with the reci-
procal of the bulk stomatal resistance (rsc), known as canopy con-
ductance (gsc). The expression for canopy conductance (gsc)
developed by Leuning et al. (2008) was given as:

gsc ¼
gmax

KQ
ln

Q h þ Q 50

Q h expð�KQ LAIÞ þ Q 50

� �
1

1þ Da=D50

� �
ð18Þ

in which gmax is the maximum stomatal conductance of leaves at
the top of the canopy (m s�1); KQ is the extinction coefficient for
shortwave radiation; Qh is the flux density of visible radiation at
the top of the canopy (W m�2) (approximately half of incoming so-
lar radiation); Q50 is the visible radiation flux when stomatal con-
ductance is half its maximum value (W m�2); Da is the vapor
pressure deficit (VPD) at the reference height (kPa); and D50 is the
VPD at which stomatal conductance is half its maximum value
(kPa). The responses of gsc to VPD, LAI and solar radiation calculated
by the formula suggested by Leuning et al. (2008) were similar to
that by means of the multiplicative formulation proposed by Jarvis
(1976) (see Supporting information B). To include the effect of soil
water content on stomatal conductance, we modified this expres-
sion (Eq. (18)) as:

gsc ¼
gmax

KQ
ln

Q h þ Q 50

Q h expð�KQ LAIÞ þ Q 50

� �
1

1þ Da=D50

� �
f ðhÞ ð19Þ

where f(h) is the factor that takes into account water stress, and it
ranges between 0 and 1 following the relationship (Thompson
et al., 1981):

f ðhÞ ¼
1 h > hcr

h�hw
hcr�hw

hw 6 h 6 hcr

0 h < hw

8><
>:

9>=
>; ð20Þ

where hw is water content at the wilting point (m3 m�3); and hcr is
the critical water content at which plant stress starts and was set as
hcr = 0.75hs.

2.5. Model calibration and evaluation of model predications

The parameters associated with the S–W model described
above, namely KA, b1, b2, gmax, KQ, Q50 and D50 (Table 1), were com-
ponents of the parameter vector, b, and were calibrated using the
Bayesian probabilistic inversion approach. We assumed that the
model error, i.e. the difference between the simulated outputs (S)
and observed data (O), is independent and normally distributed
with mean zero (Van Oijen et al., 2005; Svensson et al., 2008;
Zhu et al., 2011). From the properties of the normal distribution,
the likelihood function for the entire series O, containing n obser-
vations, is calculated as:

pðOjb;r2Þ / r�n
Yn

i¼1

exp � ½Oi � Sðxi; bÞ�2

2r2

( )
ð21Þ

where Oi is the measured evapotranspiration flux for observation i
(i = 1,2, . . .,n), xi is the vector of model input data, S(xi; b) is the
model simulation output with the parameter vector b, and r is
the standard deviation of the model error. We assumed that the cal-
ibration parameter (b) is distributed uniformly within a specified
interval (Table 1), and the prior distribution of r is uniform over
logr (Gelman et al., 1995). Thus, the noninformative prior distribu-
tion used in our analysis was:
pðb;r2Þ / 1
r2 ð22Þ

Using the above prior, the joint posterior distribution, also
called the target distribution, is defined as:

pðb;r2jOÞ / r�ðnþ2Þ
Yn

i¼1

exp � ½Oi � Sðxi; bÞ�2

2r2

( )
ð23Þ

The posterior distribution was sampled using the Metropolis–
Hasting (M–H) algorithm (Metropolis et al., 1953; Hastings,
1970), a version of the Markov Chain Monte Carlo (MCMC) tech-
nique (Gelfand and Smith, 1990; Gelman and Rubin, 1992). To gen-
erate a Markov chain in the parameter space, the M–H algorithm
was run by repeating two steps: a proposing step and a moving
step. In the proposing step, we used a uniform proposal distribu-
tion to generate a new point bnew centered at the previously ac-
cepted point b(k�1):

bnew ¼ bðk�1Þ þ u
D
� ðbmax � bminÞ ð24Þ

where u is a random number uniformly distributed between �0.5
and +0.5, bmax and bmin is the upper and lower limits of parameter
vector b, and D is a value controlling the proposing step size. In
the moving step, point bmax is treated against the Metropolis crite-
rion to examine if it should be accepted or rejected (see Supporting
information C for a detail description of the M–H algorithm). The
Bayesian calibration procedure was written in the computer pro-
gramming language Matlab 7.3 (MatWorks Inc., Natick, MA, USA).
We ran at least three parallel MCMC chains with 20000 iterations
each, evaluated the chains for convergence, and thinned the chains
(every 20th iteration) when appropriate to reduce within chain
autocorrelation, thereby producing an independent sample of
3000 values for each parameter from the joint posterior
distribution.

2.6. Evaluation of model predictions

Model goodness-of-fit was evaluated by using the S–W model
to predict evapotranspiration, which could then be compared with
measured values. If the model perfectly predicted the data, all ob-
served-versus-predicted points would lie exactly on the 1:1 line.
We also used the root mean square error (RMSE) to characterize
the mismatch of the calculated values against the observed values.
The RMSE is given by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

½Oi � Sðxi; �bÞ�2
vuut ð25Þ

where simulations Sðxi; �bÞ were calculated using the posterior
expectancy of parameter ð�bÞ.

3. Results and discussion

3.1. Environmental conditions

Detailed information on the seasonality of key environmental
variables is essential to assess seasonal variation in the actual ET
and its partitioning. The seasonal change in air temperature
(Ta; �C), air vapor pressure deficit (D; kPa), net solar radiation
(Rn; MJ m�2 d�1), wind speed (u, m s�1) at the height of 2 m, pre-
cipitation (mm), soil water content (h; %) at the depth of 5 cm
and leaf area index (LAI; m2 m�2) was illustrated in Fig. 2. During
the study period (Days 157–273), the daily mean air temperature
was around 9.5 �C, and the daily range of temperature was large,
usually more than 15 �C (Fig. 2). The ecosystem experienced great
day-to-day variation in daily mean D from 0.1 to 0.9 kPa. Also,



Table 1
Prior distributions and the parameter bounds for the S–W model. These values are derived from the literature; n/a indicates that information was not available in the literature.
The posterior parameter distribution estimated by MCMC are based on observed data in our site, and are characterized by the mean and 95% CIs (i.e., 2.5th and 97.5th percentiles).

Parameter Prior distribution Posterior distribution

Lower
Bound

Upper
Bound

References DOY157-173
(LAI < 3.0)

DOY174-243
(3.0 < LAI < 4.0)

DOY244-251
(2.0 < LAI < 3.0)

DOY252-273
(1.0 < LAI < 2.0)

Multi-data

gmax (mm s�1) 0 50 Kelliher et al. (1995) 36.6 (29.5, 49.0) 22.5 (20.4, 25.1) 12.3 (10.5, 15.0) 10.2 (10, 11.5) 18.2
(17.1,19.4)

Q50 (W m�2) 10 50 Leuning et al. (2008) 24.3 (11.3, 47.4) 16.8 (10.5, 31.0) 20.8 (10.7, 46.5) 17.9 (10.5, 42.1) 14.3 (10.3,
23.6)

D50 (kPa) 0.5 3 Leuning et al. (2008) 2.2 (1.3, 2.5) 2.4 (2.1, 2.5) 2.2 (1.5, 2.5) 0.8 (0.6, 1.1) 2.5 (2.3, 2. 8)
KQ 0 1 Leuning et al. (2008) 0.51 (0.32, 0.80) 0.41 (0.31, 0.69) 0.50 (0.31, 0.78) 0.52 (0.31, 0.76) 0.46 (0.30,

0.58)
KA 0 1 Leuning et al. (2008) 0.81 (0.56, 0.89) 0.85 (0.73, 0.90) 0.79 (0.57, 0.89) 0.86 (0.73, 0.90) 0.79 (0.84,

0.90)
b1 (s m�1) 4.5 11.3 Sellers et al. (1992); Zhang

(2012)
7.87 (6.15, 8.99)a

b2 (s m�1) 0 8 Sellers et al. (1992); Zhang
(2012)

2.86 (0.41, 4.53)a

a Calibrated using 2-week data in the middle of October during which the plant physiological activities were stopped.

Fig. 2. Seasonal variation in daily air temperature (Ta) (mean air temperature, fine line; maximum air temperature, full circle; minimum air temperature, circle), mean daily
air vapor pressure deficit (D), net solar radiation (Rn), wind speed (u) at the height of 2 m, precipitation (mm), soil water content (h) at the depth of 5 cm and leaf are index
(LAI).
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half-hour data (not shown) indicated that peak values of D as high
as 1.5–2 kPa frequently occurred in the afternoon (about 15:00 h at
Beijing Standard Time). Daily mean wind speed ranged from 2 to
4 m s�1, and was close to normal long-term values. The precipita-
tion in year 2008 was 449 mm, which was comparable with the
average value of 450 mm (Niu et al., 2008), and was mainly con-
centrated in the period from May to September. Within this
high-precipitation period, 2–7 consecutive dry days occasionally
followed rainy days (Fig. 2). During these short dry intervals, the
soil water content decreased gradually from 0.45 m3 m�3 to values
close to 0.3 m3 m�3 (Fig. 2).
The LAI increased rapidly from �1 m2 m�2 in early June to
3 m2 m�2 on 22 June (DOY173), and reached a maximum of
4 m2 m�2 on 17 July (DOY198). After the end of August
(DOY243), the LAI decreased rapidly from about 3 m2 m�2 to
1 m2 m�2 (Fig. 2).

3.2. Posterior distribution of the S–W model parameters

As stated above, the parameters in the S–W model were associ-
ated with different components of ET (e.g., b1 and b2 were related
to soil evaporation, and gmax, D50, Q50 and KQ were related to



Fig. 3. Posterior mean estimates (cross) and 95% CIs (closed circles) for seasonal
variation given by the Bayesian approach based on different dataset.

Fig. 4. Regression between measured and modeled half-hourly evapotranspiration
values by different dataset procedures: (a) dataset-by-dataset procedure and (b)
multi-dataset procedure. The regressions are: y = 1.01x � 13.73 (R2 = 0.87) and
y = 0.98x � 12.28 (R2 = 0.86) for dataset-by-dataset and multi-dataset procedures,
respectively.
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transpiration). However, direct measurements of the components
of ET (e.g., transpiration and evaporation) were not available at
present study. Therefore, it may be unreasonable to simulta-
neously estimate all parameters in the S–W model. Here, two-
day test period (in the late of October) was selected for which
the plant physiological activities were stopped. Under such condi-
tions the evaporation was regarded as mainly from the soil surface.
By using the original Penman–Monteith equation which was
adopted to express evaporation from soil surface (Zhang, 2012),
we can get an independent estimate of the parameters (b1 and
b2; s m�1) in the soil surface resistance (rss; s m�1). The posterior
estimates for b1 and b2 corresponding to the means and 95% CIs
(i.e., 2.5th and 97.5th percentiles) were 7.87 (6.15, 8.99) and 2.86
(0.41, 4.53), respectively (see details in Supporting information
D). The soil surface resistance (rss; s m�1) computed using the pos-
terior mean parameter values and that (b1 = 8.2, b2 = 4.3) suggested
by Sellers et al. (1992) were very similar (Supporting information
D). In addition, evaporation (kE) calculated using the S–W model
with the posterior mean parameter values were compared with
measurements during the period 20–31 October. The linear regres-
sion between the measured and estimated kE values had a slope of
0.95, intercept of �6.36 W m�2 and a correlation coefficient of 0.76
(Supporting information D). Thus, we thought the estimates of the
soil surface resistance parameters (b1 and b2; s m�1) were proper
and maintained constant during the whole study period.

By fixing the soil resistance parameters, other parameters (gmax,
D50, Q50, KA and KQ) in the S–W model were calibrated with differ-
ent seasonal dataset and multi-dataset procedures. Their posterior
distributions corresponding to the means and 95% CIs were pre-
sented in Fig. 3. Such representation makes it possible to visualize
seasonal differences of the posterior distributions of the parame-
ters, while the shape of the plot reveals the dispersion and symme-
try of the marginal distributions (Lehuger et al., 2009). It was
noticed that the posterior distributions of most parameters (e.g.,
gmax, D50, KA and KQ) become narrower compared to the uniform
prior distributions (Fig. 3 and Table 1), which is undoubtedly due
to the efficiency of our calibration procedure. Thus, the choice of
an uniform prior distribution had little influence on the calibration,
as the information contained in the experimental data gradually
became dominant (Van Oijen et al., 2005). Noticeably, significantly
seasonal variation in gmax was detected by the MCMC method
based on different seasonal dataset (Fig. 3 and Table 1). That is,
the maximum value occurred during initial leaf expansion period
(DOY157-173) and declined after that (Fig. 3). Similar patterns
have been found in a Populus forest (Zhu et al., 2011), a northern
temperate grassland (Wever et al., 2002) and a Japanese grassland
(Saigusa et al., 1998). In addition, the smallest value of D50 of
DOY252-273 was mainly contributed to the relatively lower air va-
por pressure deficit during this period (Fig. 2). On the contrary,
parameter Q50 remained spread across their prior range of varia-
tion, and its posterior means were similar to the means specified
by its prior distribution (about 25 W m�2). This means that the cal-
ibration did not significantly reduce its uncertainty under the non-
informative prior (Zhu et al., 2011).

The rightmost plot in each graph in Fig. 3 depicts the distribu-
tion obtained with the multi-data procedure. The shape of this plot
and its median value appeared to be more constrained by certain
datasets than others, which may be explained by the fact that
the combination of such datasets had a comparatively larger num-
ber of observations, and subsequently gained more weight in the
likelihood function (Lehuger et al., 2009). For example, the mean
of gmax for the multi-dataset exhibited high similarity to that for
DOY174-243 and DOY244-251, and D50 for the multi-dataset
seemed to be more contained by DOY174-243 (Fig. 3).
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3.3. Overall performance of the Bayesian method for the S–W model

Having parameterized the S–W model as described above
(including both the dataset-by-dataset and multi-dataset proce-
dures), we ran the model to simulate the half-hourly ET values
(kET). The resulting simulations of kET using optimized parameters
based on different datasets were compared with measured values
(Fig. 4). However, it was noticed that the S–W model produced a
slightly better fit to the half-hourly kET for all seasons when data-
set-by-dataset optimized parameters were considered. Points in
the plots of observed-versus-predicted kET fell tightly along the
1:1 line (slope = 0.97, 1.02, 1.01 and 0.97 with R2 = 0.82, 0.88,
0.89 and 0.85 for DOY157-173, DOY174-243, DOY244-251 and
DOY252-273, respectively; Table 2). Also, no obvious deviation of
the diurnal simulations was detected in these four phases (Fig. 5a).

On the contrary, the error when using multi-dataset optimized
parameters was not negligible during the leaf expansion (DOY157-
173) and senescence periods (DOY252-273) (slope = 0.87 and 1.17
with R2 = 0.80 and 0.85 for DOY157-173 and DOY252-273, respec-
Table 2
Root mean square error (RMSE) of half-hourly evapotranspiration estimate, as well as the
and modeled half-hourly evapotranspiration values based on the posterior expectancy of p
the S–W model.

Period Dataset-by-dataset

Slope Intercept R2

DOY157-173 (LAI < 3) 0.97 �10.83 0.82
DOY174-243 (LAI > 3) 1.02 �16.14 0.88
DOY244-251 (2 < LAI < 3) 1.01 �11.97 0.89
DOY252-273 (LAI < 2) 0.97 �8.56 0.85
Whole season 1.01 �13.73 0.87

Fig. 5. Diurnal variations of the measured (circle) and modeled evapotranspiration (ET)
dataset-by-dataset procedure and (b) multi-dataset procedure.
tively; Table 2). In general, the values of ET was slightly underesti-
mated and overestimated by the multi-dataset procedure during
the leaf expansion period and senescence period (Table 2 and
Fig. 5b), respectively. This seems to be due to the significant differ-
ences in estimates of gmax between the dataset-by-dataset and
multi-dataset procedures during these two phases (Fig. 3). Previ-
ous studies also have shown that systematic overestimation or
underestimation of ET may occur when constant parameters were
used for some ecosystems (Hu et al., 2009; Zhu et al., 2011). Thus,
for long time simulations of ET, it was important to consider the
seasonal changes in the physiology-related parameters (e.g., the
maximum stomatal conductance, gmax).

3.4. Partitioning of ET and its controlling factors

The average daily evaporation and transpiration fluxes were
illustrated in Fig. 6a. Transpiration was much greater than evapo-
ration except during the leaf expansion (DOY157-173) and senes-
cence periods (DOY252-273), when plants were less active. The
slope, intercept and coefficient of determination (R2) of regression between measured
arameters from the dataset-by-dataset and multi-dataset of the MCMC procedure for

Multi-dataset

RMSE Slope Intercept R2 RMSE

51.80 0.87 �9.75 0.80 53.40
49.78 0.99 �15.83 0.88 49.94
37.76 1.08 �12.09 0.89 39.37
32.69 1.17 �8.62 0.85 39.04
46.60 0.98 �12.28 0.86 47.95

during four distinct growing stages using different parameterized procedures: (a)



Fig. 6. (a) Daily variations in modeled evapotranspiration compared to transpira-
tion and evaporation, and (b) ratio of evaporation to evapotranspiration estimated
from the S–W model at the alpine grassland during the study period.
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ratio of the estimated daily soil evaporation (E) over total evapo-
transpiration (ET) (E/ET) of peak growing seasons (DOY174-243)
was 0.02–0.07 with a mean of 0.04 when LAI was higher than
3 m2 m�2 (Fig. 6b). Thus, we conclude that water for soil surface
evaporation in the alpine grassland ecosystem was small or negli-
Fig. 7. (a) Effect of canopy stomatal conductance (gsc) on E/ET at the half-hour time scale,
modeled daily E to modeled daily ET.
gible when the canopy was full developed. This trend of fractions
of E in ET is in agreement with previous studies. For example,
Wang and Yakir (2000) found E/ET is 0.015–0.035 over a mature
wheat in arid and semi-arid environment. Ferretti et al. (2003) esti-
mated E/ET over a short-grass steppe through measurements by
stable isotopes in semi-arid northeastern Colorado. They found
the daily E/ET ranged from nil to 0.13 with a mean of 0.07 during
the growing season. Sauer et al. (2007) also found that the daily
E/ET was less than 0.08 over a soybean crop when the canopy be-
come close (LAI > 5 m2 m�2). Xu et al. (2008) investigated the daily
dynamics of E/ET in a subalpine shrub-land (Quercus aquifolioides)
based on stable isotopic measurements during three days in the
early monsoon period in Wolong Nature Reserve, China. Their re-
sults indicated that daily E/ET was only about 0.02–0.05.

To understand the mechanisms in controlling E/ET, we investi-
gated the effect of canopy conductance (gsc) on the diurnal varia-
tions in E/ET with half-hourly data during the whole study
period (Fig. 7a). As expected, the canopy conductance had signifi-
cant effects on the diurnal variation in E/ET at the alpine grassland
ecosystem. E/ET descended gradually with the increase of gsc due
to the combined effects of VPD, Rn, soil water content and plant
physiological rhythm (Hu et al., 2009). It was noticed that a minor
increase of gsc would cause substantial decrease in E/ET when gsc

was at low level (less than 30 mm s�1). But when gsc exceeded this
threshold, E/ET almost kept constant (5%) without further decrease
(Fig. 7a). Similar phenomena were also discovered in other grass-
land ecosystems in China (Hu et al., 2009). The daily dynamic of
E/ET was mainly controlled by the changes in LAI, and the relation-
ship between E/ET and LAI in the alpine grassland can be described
with a logarithmic function (Fig. 7b). That is, E/ET reduced gradu-
ally with the increase of LAI when LAI was less than 3 m2 m�2,
and finally approached a constant value (about 0.05). This was con-
sistent with previous studies (e.g., Liu et al., 2002; Kato et al., 2004;
Hu et al., 2009). Compared with other grasslands in China (Hu
et al., 2009), the sensitivity (i.e., the slope of the fixed curve) of
E/ET to LAI was relative low (about �0.14). This may be due to
the high vegetation cover (more than 95%) and good growth condi-
tions of the alpine grassland. Interestingly, the sensitivity of E/ET to
LAI was found to be considerably different between DOY157-198
(LAI increasing from 1.1 to 4.0) and DOY199-304 (LAI decreasing
form 4.0 to 1.0). The slopes of the fit line between LAI and E/ET
were �0.04 and �0.12 for DOY157-198 and DOY199-304, respec-
tively, suggesting an increased sensitivity with the decline of veg-
etation conditions (i.e., leaf chlorophyll content).
and (b) effect of leaf area index (LAI) on daily E/ET. E/ET was calculated as the ratio of
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4. Conclusions

The study presented here illustrated the use of the Bayesian ap-
proach for the statistical analysis of a two-source ET model in the
alpine grassland on Qinghai-Tibetan plateau. The good liner regres-
sion between simulations by the ET model using the posterior
mean parameters obtained by different procedures (dataset-by-
dataset and multi-data) and observations indicated that the model
was very reliable in estimating the ET at the ecosystem level. How-
ever, some mismatches may exist for the multi-data procedure,
due to the ignoring of seasonal variations of physiology-related
parameters. Furthermore, canopy conductance, LAI as well as veg-
etation condition were the main factors control the partitioning of
ET at different timescales. However, due to the lack of direct mea-
surements on the different components of ET, the simultaneous
estimates of all parameters were not achieved at present studies.
Thus, combining methods (e.g., stable isotopes and EC) should be
used in the future studies to get direct measurements of the differ-
ent components of ET.
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